Multi-Modal Hierarchical Dirichlet Process Model for Predicting Image Annotation and Image-Object Label Correspondence
نویسندگان
چکیده
Many real-world applications call for learning predictive relationships from multi-modal data. In particular, in multi-media and web applications, given a dataset of images and their associated captions, one might want to construct a predictive model that not only predicts a caption for the image but also labels the individual objects in the image. We address this problem using a multi-modal hierarchical Dirichlet Process model (MoM-HDP) a stochastic process for modeling multimodal data. MoM-HDP is an analog of a multi-modal Latent Dirichlet Allocation (MoM-LDA) with an infinite number of mixture components. Thus MoM-HDP allows circumventing the need for a priori choice of the number of mixture components or the computational expense of model selection. During training, the model has access to an un-segmented image and its caption, but not the labels for each object in the image. The trained model is used to predict the label for each region of interest in a segmented image. The model parameters are estimated efficiently using variational inference. We use two large benchmark datasets to compare the performance of the proposed MoM-HDP model with that of MoM-LDA model as well as some simple alternatives: Naive Bayes and Logistic Regression classifiers based on the formulation of the image annotation and imagelabel correspondence problems as one-against-all classification. Our experimental results show that unlike MoM-LDA, the performance of MoM-HDP is invariant to the number of mixture components. Furthermore, our experimental evaluation shows that the generalization performance of MoM-HDP is superior to that of MoM-HDP as well as the one-against-all Naive Bayes and Logistic Regression classifiers.
منابع مشابه
Matching Words and Pictures
We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto-annotation) and corresponding to particular image regions (region naming). Auto-annotation might help organ...
متن کاملMulti-Modal Image Annotation with Multi-Label Multi-Instance LDA
This paper studies the problem of image annotation in a multi-modal setting where both visual and textual information are available. We propose Multimodal Multi-instance Multi-label Latent Dirichlet Allocation (M3LDA), where the model consists of a visual-label part, a textual-label part and a labeltopic part. The basic idea is that the topic decided by the visual information and the topic deci...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملMulti-modal Multi-label Semantic Indexing of Images Based on Hybrid Ensemble Learning
Automatic image annotation (AIA) refers to the association of words to whole images which is considered as a promising and effective approach to bridge the semantic gap between low-level visual features and high-level semantic concepts. In this paper, we formulate the task of image annotation as a multi-label multi class semantic image classification problem and propose a simple yet effective m...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کامل